神戸海星女子学院中学校2001年第1問(5)
(問題)
円柱の形をした2つの空の容器ア、イがあります。アの容器に10cmの深さまで水を入れ、その水をすべてイの容器に移すと深さは6cmになりました。イにある水をアにいくらかもどして2つの容器の水の深さを等しくすると、深さは□cmになります。
(解答・解説)
30秒以内で解ける問題です。 高さ(深さ)の比 ア(水の部分):イ(水の部分)=10cm:6cm=5:3 ↓逆比←体積一定 底面積の比 ア:イ=3:5=B:D ここで、アとイを合体させた容器(ウとします)を考えます。 ウの底面積はB+D=Gで、水の体積はB×10だから、求める高さ(深さ)は B×10/G =15/4cm となります。