HOME 中学受験・算数の森(本館)へ プロ家庭教師のお申し込み・ご相談へ 久留米大学附設中学校の過去問(本館)へ |
---|
久留米大学附設中学校2018年算数第1問(3)
(問題) (ア)<図1>のようなマス目に1つずつ数を入れたところ、縦、横、ななめの3個の数の和がすべて等しくなりました。Xにあてはまる数は何ですか。 (イ)<図2>のようなマス目に1つずつ0でない数を入れたところ、縦、横、ななめの3個の数の積がすべて等しくなりました。Yにあてはまる数は何ですか。 |
(解答・解説) 算数オリンピックのキッズBEE対策としてちょうどいい問題です。2問解くのに30秒もかからないでしょう。 (ア) 1番上の横3個の数の和と真ん中の縦3個の数の和が等しいから、共通する☆を取り除いた黄色2個の数の和と水色2個の数の和も等しくなるから、マス目の真ん中の数は5+6-2=9となります。 また、1番左の縦3個の数の和と右上から左下への斜め3個の数の和が等しいから、共通する★を取り除いたピンク色2個の数の和と黄緑色2個の数の和も等しくなるから、Xは6+9-5=10となります。 (イ) 1番上の横3個の数の積と真ん中の縦3個の数の積が等しいから、共通する☆を取り除いた黄色2個の数の積と水色2個の数の積も等しくなるから、マス目の真ん中の数は5×6/2=15となります。 また、1番左の縦3個の数の積と右上から左下への斜め3個の数の積が等しいから、共通する★を取り除いたピンク色2個の数の積と黄緑色2個の数の積も等しくなるから、Yは6×15/5=18となります。 |